
UNIVERSITY of DERBY

Derbyshire Business School

A project completed as part of the requirements for the

BSc (Hons) Computer Studies

entitled

Fast Real-Time Terrain Visualisation Algorithms

by

Gerhard Zlabinger

in the years 2003–2004

Abstract

This report is a comprehensive comparison of existing algorithms in the domain of Real-

Time Terrain Rendering, focused on technical aspects as well as investigating applicability

to military simulations and entertainment products.

This report also documents the implementation of a prototypical terrain rendering

engine, capable of rendering terrain at continuous level of detail by using the the QuadTree

algorithm described by Stefan Röttger et al in 1998.

Contents

1 Introduction 5

1.1 Aims and Objectives . 6

2 Background 7

2.1 Definition of Terrain Rendering . 7

2.2 Historical Development . 7

2.3 Background . 8

2.3.1 Heightmaps . 8

3 Classification of Algorithms 10

3.1 Voxel Graphics based Algorithms . 10

3.2 Polygon based Algorithms . 11

3.2.1 Brute Force Rendering . 11

3.2.2 Culling . 13

3.2.3 Level of Detail Rendering . 15

3.2.4 GeoMipMapping . 16

3.2.5 Interlocked Tiles . 18

3.2.6 Continuous Level of Detail Rendering 19

3.2.7 QuadTree Algorithm . 20

3.2.8 Roettger et al . 22

3.2.9 Real-Time Optimally Adapting Meshes (ROAM) 25

3.3 Conclusion . 27

4 Design 29

4.1 Use Case Diagram . 29

4.2 Class Diagram . 31

4.2.1 Application . 32

4.2.2 Renderer . 33

4.2.3 QuadTreeRenderer . 33

4.2.4 Map . 33

4.2.5 Camera . 33

4.2.6 Console . 34

4.3 Changes to the initial Design . 34

2

5 Implementation 35
5.1 Details . 36
5.2 Optimisation . 38
5.3 Configuration . 39

6 Evaluation and Future Work 40

A Initial Design Diagrams 45

B User Documentation 48
B.1 Engine Configuration . 48

B.1.1 ‘General Settings’ Tab . 49
B.1.2 ‘Texture’ Tab . 50
B.1.3 ‘OpenGL’ Tab . 51
B.1.4 ‘Controls’ Tab . 52

B.2 Starting the Engine . 53
B.2.1 On Screen Information . 53

C Screenshots 54

D Project Proposal 58

E Progress Reports 60

3

List of Figures

2.1 A 256x256 heightmap . 8
2.2 Heightmap transformation . 9

3.1 Function call overhead calculation . 13
3.2 A viewing frustum, taken from Picco (2003) 14
3.3 A top-level patch, taken from de Boer(2000) 16
3.4 A coarse patch, taken from de Boer(2000) 17
3.5 Two-step approximation, adapted from Lindstrom (1996) 21
3.6 A QuadTree matrix, taken from Röttger(1998) 22
3.7 QuadTree tesselation, taken from Röttger(1998) 23
3.8 d2 error calculation, taken from Röttger(1998) 23
3.9 ROAM triangulated terrain, taken from Duchaineau et al (1997) 25
3.10 A forced split, taken from Duchaineau et al (1997) 26
3.11 Algorithm Comparison . 27

4.1 Use Case Diagram . 30
4.2 Class Case Diagram . 32

5.1 A screenshot of the engine . 36
5.2 Recursive d2 error calculation . 37
5.3 Recursive crack prevention algorithm . 37

A.1 Initial Use Case Diagram . 46
A.2 Initial Class Diagram . 47

B.1 The General Tab . 49
B.2 The Texture Tab . 50
B.3 The OpenGL Tab . 51
B.4 The Controls Tab . 52
B.5 On-Screen Information . 53

C.1 A textured heightmap . 55
C.2 The same scene as C.1 without texture mapping 56
C.3 Frustum culling demonstration . 57

4

Chapter 1

Introduction

The process of Terrain Visualisation possesses a multitude of applications in industry.

Besides the most obvious and profitable field of application — the entertainment industry

— the presentation of landscapes forms an integral part of a large number of scientific

and military simulations.

The different domains were clearly delimited in terms of research as well as applications

in the “early days” of research in the 1970s, a consequence of the tremendous costs for

rendering hardware those days.

This has changed significantly as powerful hardware has become cheap in recent years.

Constraints in graphics research and development have become blurred or have even

vanished completely. A current example for this development is NASA‘s latest Mars

mission, which uses nVidia Graphics hardware to display geographical data collected by

the Mars rover Spirit. nVidia — a company that is specializing in graphics hardware for

the game market — enables “NASA scientists to interactively plan rover movements using

3D photo realistic views of the surface” on Mars (nVidia 2003). For another example,

consider the ROAM algorithm by Mark Duchaineau et al. Although its development was

funded jointly by the U.S. Navy and Airforce, the popular computer game TreadMarks

5

uses an implementation of ROAM to render the environment (Turner 2000).

Processing capacity of modern CPUs is still the restricting factor in application and game

development. Both, simulation and game developers have great interest in making their

applications as realistic as possible. Thus, the driving thought behind terrain rendering

algorithms is to create faster and more efficient graphics algorithms, allowing other costly

parts of the simulation components, like artificial intelligence or a physics engine, to

consume more processing resources.

A great variety of algorithms has emerged in the last ten years, introducing many inter-

esting and efficient ideas. This project report gives an overview of the most significant

algorithms that have been published on this topic.

1.1 Aims and Objectives

• Perform research on existing algorithms/approaches

The report contains a comprehensive literature review on the topic of terrain ren-

dering algorithms, identifying internationally respected authorities and giving an

overview of their work.

• Comparison of different Terrain Visualization Algorithms

The project includes a critical evaluation of the various algorithms, which points out

merits and demerits of different approaches. The results of this analysis are exam-

ined for their applicability to military and scientific purposes as well as applications

in entertainment industry.

• Gain first-hand experience in engine implementation

Design and implement a prototypical terrain rendering engine for the Win32 plat-

form using OpenGL.

6

Chapter 2

Background

2.1 Definition of Terrain Rendering

There is no common definition of terrain rendering. For this report, terrain rendering

is considered an integral part of an application concerned with the representation of

landscapes on computer screens in real-time. In this respect, a landscape comprehends

geographic characteristics of terrain such as hills and valleys, whereas it does not comprise

objects (e.g. houses and trees) and also doesn‘t take any environment effects (e.g. cloud

shadows) into account.

2.2 Historical Development

Prior to the early 1990s, terrain visualisation was a field of research mostly attended

to by the military and institutes that could afford the necessary hardware to provide

the processing power needed for rendering large landscapes at real-time. As personal

computers began to grow more and more powerful about fifteen years ago, a development

7

which was accompanied by a respectable progress of graphics hardware capabilities, the

entertainment industry also started developing solutions of its own.

Since 1990, a lot of papers have been published presenting many different approaches to

the problem of rendering terrain at high detail in real-time.

2.3 Background

Although the methods for rendering terrain in real-time differ from each other in many

ways, they share some basic concepts. The most important of those is the underlying

data structure that is used to represent the landscape information in memory.

2.3.1 Heightmaps

All algorithms covered in this report project terrain data from a heightmap or heightfield

(Watt & Policarpio 2001), (Pollack 2003).

A heightmap is a regular grid, mostly square or rect-

Figure 2.1: A 256x256 heightmap

angular. It can be thought of as a bitmap, in which

x- and y-position in world coordinates are defined by

the x- and y-position in the heightmap and the eleva-

tion at point(x/y) in the landscape is defined by the

intensity1 value of point(x/y) in the heightmap.

Illustration 2.1 shows a sample heightmap. Black ar-

eas have low elevation (valleys), white areas have high

elevation (hills).

1intensity corresponds to color in a gray scale image

8

The transformation from map coordinates to world coordinates can mathematically be

described as depicted in Figure 2.2.

This way of representation is very efficient, although the fact that the landscape is repre-

sented as a two-dimensional surface implies that three dimensional entities (caves, etc...)

cannot be described by a heightmap. A particular point(x/y) can only have one unique

elevation.

However, using a regular structure to describe

xworld = xmap

yworld = map(xmap/ymap)

zworld = ymap

Figure 2.2: Heightmap transformation

the landscape is superior to conventional meth-

ods of representation, i.e. polygonal or mesh

representation. For example, it is very simple

to find triangle strips in a square, regular grid.

Many terrain visualisation algorithms that have

emerged, e.g. ROAM or QuadTree algorithms,

exploit the fact that the underlying data struc-

ture is a regular grid.

In a triangle strip neighbouring triangles share two common vertices. This way, the

amount of vertices sent to the rendering hardware can be reduced from 3 ∗ n to 2 + n

(Watt & Policarpio 2001). Benchmark tests carried out by Marshall (2002) and Wright &

Sweet (2000) show that an extensive performance gain can be achieved by using triangle

strips.

9

Chapter 3

Classification of Algorithms

3.1 Voxel Graphics based Algorithms

One of the first attempts to create an efficient terrain rendering algorithm for personal use

resulted in voxel graphics, discussed by Glassner (1990) and Arvo (1990). This approach

casts a number of virtual rays from the view point through a projected screen onto the

surface. The color of each pixel is determined by the color of the point where the ray

that made his way through that particular pixel hit the surface. This algorithm worked

well and produced spectacular results for that time (NovaLogic‘s Comanche: Maximum

Overkill, released 1992).

An interesting aspect of voxel algorithms is that level of detail processing, which will be

discussed in more detail in section 3.2.3 and section 3.2.6 is automatically performed.

This means that objects that are far away from the user‘s view port are rendered with

fewer pixels than objects that are near and require more visible detail.

However, due to the development of 3D Graphics Accelerator Hardware which is based on

the rendering of triangles and polygons, the voxel graphics algorithm has many drawbacks

10

compared to approaches that were designed with the architecture of modern rendering

devices in mind.

Besides the stated disadvantages on today‘s triangle based rendering hardware, the al-

gorithm is currently under patent by NovaLogic (Abner 2000), preventing any use and

improvements to that algorithm in commercial applications. Thus, it is only mentioned

for historical reasons and not discussed any further.

3.2 Polygon based Algorithms

3.2.1 Brute Force Rendering

A method to render terrain data on 3D accelerated hardware which might seem obvious at

first sight is called Brute Force rendering. This approach relies entirely on the acceleration

capabilities of the rendering device. It works by storing the entire height information

in one (very possibly vast) vertex buffer and leaving the whole task of optimisation and

acceleration to the rendering hardware. There are some graphics hardware manufacturers

(e.g. nVidia) who encourage this method of rendering landscapes. Although ensuring

high visual detail of the resulting image, this method has several drawbacks in comparison

to the algorithms described in the following sections. The most significant is the huge

amount of data that has to be transferred to and processed by the graphics device every

single frame. The bottleneck of modern graphics hardware not being the rendering speed

but the bandwidth of the data transfer, this approach will result in slow performance

compared to algorithms that reduce the amount of data to be processed, which are

discussed in the next sections.

However, this algorithm might be usable for applications that don‘t need a very high

level of detail, since it has very little CPU overhead. A fast brute force implementation

11

needs to contain very efficient clipping and culling algorithms if large data sets are to be

handled (Maréchal 2001).

Modern Graphics Hardware offers a feature that can speed up brute force rendering

significantly. Index Buffers (DirectX) or Vertex Arrays (OpenGL) (Microsoft 2001) are

arrays of vertex, color and lighting data. Instead of issuing a single draw command for

each vertex that is to be drawn, an application can store vertex and color information in

arrays and draw them at once (or just a specified range of an array) with only one single

function call. According to Marselas (2001), this method has two advantages :

1. it eliminates the function call overhead and

2. it enables graphics hardware to store vertex data in device memory.

Modern CPU architecture makes function calls cheap through prediction algorithms and

similar techniques. The following example illustrates that the omitted function call over-

head does not lead to a significant performance increase.

Calculations are based on following assumptions: a scene consists of 6500 triangles that

have to be rendered every frame. Function calls and corresponding returns take three

clock cycles on average on an Intel Pentium 4 processor1 (Intel 2003), pushing three

arguments for glVertex3f() and glColor3f() to the stack takes three more clock cycles, so

in total 6 clock cycles are needed for making a function call2. The function calls have to

be issued inside a control loop iterating over an array of color and vertex information,

taking 20 cycles per iteration. A vertex possesses color information as well as texture

coordinates. Consequently, three vertices have to be specified for each triangle by issuing

three separate function calls (glColor(), glTexCoords() and glVertex()). This has to be

done 6500 times.

1assuming the jump target resides in the processor cache
2this is a simplified calculation but sufficient for the purpose of demonstration

12

6500 ∗ (3 ∗ 3 ∗ 6 + 20) = 481000cycles

Figure 3.1: Function call overhead calculation

The overhead is calculated as shown in figure 3.1, resulting in 481000 CPU cycles for one

frame. On a modern Pentium4 with 3.06GHz 481000 cycles take less than one millisecond

to complete. This result clearly shows that vertex buffers have lost one of their advantages

over the years as processors grew more powerful and function calls got cheaper.

However, the real power of vertex arrays lies within the possibility of the graphics hard-

ware to store vertex data in device memory and therefore enabling vertex optimization as

well as reducing bus traffic. The performance increase experienced by the author during

an early stage of the engine prototype‘s development was more than 100% after enabling

vertex arrays compared to separate rendering function calls for every single vertex in the

scene.

This result confirms the observations of Pollack (2003). In the past, algorithms tried to

leave as much work load possible to the CPU and to be GPU friendly. Due to advanced

graphics hardware acceleration, algorithms work the other way round nowadays.

3.2.2 Culling

“The fastest polygons are those you don‘t draw.” (Microsoft Developer’s Network intro-

duction DirectX, (Microsoft 2001))

Frustum Culling is the process of eliminating triangles from a scene that are not visible to

the user from his current view point — that are not inside the view frustum (Picco 2003)

as shown in figure 3.2. The “main recursion function is that which selects the faces to

draw” as Watt & Policarpo (2003) point out. Therefore, frustum culling is crucial to

13

the performance of Brute Force algorithms, since all vertices are sent to the rendering

hardware.

A very common approach to culling in general

Figure 3.2: A viewing frustum, taken
from Picco (2003)

terms of 3D computer graphics are Binary Space

Partitioning (BSP) Trees (Watt & Policarpio

2001). Such trees are a way of representing all

objects in the scene. World space is sub-divided

at each tree level as long as there is more than

one object inside the node and the node is not

empty. If only one object resides within a leaf

node it receives a label corresponding with its

node. This algorithm allows very fast and effi-

cient culling strategies as well as collision detec-

tion mechanisms. There is no need to perform a visibility test on every single object in

the scene, instead the visibility test is performed on the sub-divided space derived from

the BSP tree. If a tree node is not visible, than all its sub nodes are not visible as well.

Although BSP trees are most suitable for sub-dividing three dimensional space, variations

of it — such as the QuadTree representation discussed later — can be used on two

dimensional structures like heightmaps. Most of the culling algorithms discussed in later

sections are variations or special cases of BSP trees.

The process of determining visibility within the view frustum itself is called occlusion

culling. It removes triangles that get overdrawn by triangles nearer to the view point. If

the view point is next to a wall, performance could be greatly improved by not considering

the polygons that lie beyond that wall. The benefits of occlusion culling strongly depend

on how data is represented in memory as well as the data itself. Rendering flat terrain

with occlusion culling enabled will not result in any performance gain — quite contrary,

14

the necessary processing overhead will result in a lower frame rate.

3.2.3 Level of Detail Rendering

Since the bottleneck on modern graphics hardware is not the processing speed but the

available bandwidth of the data transfer to the rendering hardware, many algorithms

have emerged which provide various techniques to reduce the amount of data that has

to be transferred per frame. This techniques are known as Level of Detail rendering

methods.

As landscapes tend to be huge, a vast amount of triangles has to be calculated and

transferred to the hardware each rendering cycle. Portions of the landscapes may have a

very high polygon count to ensure a fine level of detail, but far away from the view point

thousands and thousands of polygons may be rendered to only a few pixels on screen

(Watt & Policarpio 2001).

The idea of ‘level of detail’ rendering was first introduced by James H. Clark as early

as 1976. The general idea is to reduce the level of detail at which objects are rendered

at greater distances, based on calculation of a user specified error threshold. Some algo-

rithms provide this feature by calculating different detailed versions of objects/portions

of landscapes off-line and switching between that representations at run-time. The ap-

propriate representation can be chosen according by a function of the distance from the

object to the current view point.

However, this approach may result in annoying flickering and jumping on the screen as

details pop on and off. King (2001) suggests to take the field of view into account when

selecting the correct representation in order to avoid such undesirable artifacts. The

author also points out that his algorithm addresses general level of detail issues and that

his solution might not be suitable for terrain rendering.

15

Figure 3.3: A top-level patch, taken from de Boer(2000)

Watt & Policarpo (2003) call the process of calculating different representations of an

object off-line “building”. They suggest to distinguish between structural faces and detail

faces. Structural faces are big, flat surfaces that roughly describe an object, whereas detail

faces are such polygons that add visual detail to an object. Structural faces can be used

as splitting planes in BSP trees. The authors also discuss some landscape specialisations

in level of detail rendering, which get addressed in the following sections.

The algorithms discussed in the following sections all try to simplify the rendered scene

by leaving out surfaces that don‘t add visible detail. Thus, all algorithms can additionally

be classified as “vertex removal algorithms”, as discussed by Watt & Policarpo (2003).

3.2.4 GeoMipMapping

This approach, proposed by de Boer (2000), works very similar to the texture mip-

mapping technique.

Compared to other algorithms that will get discussed in the following sections, terrain

simplification using GeoMipMapping is easy to implement, though it will result in lower

rendering frame rates than the more complex algorithms.

16

Figure 3.4: A coarse patch, taken from de Boer(2000)

Basically, the heightmap is subdivided into square patches as shown in figure 3.3. A dot

represents a point in the heightmap, whereas lines indicate the actual triangles that are

sent to the rendering hardware. The figure shows the finest level of detail representa-

tion, i.e. the detail level of the heightmap. The vertices that actually get rendered are

determined at run-time by using a function of the distance to the view point as detail

criteria.

As the viewing distance to the patch grows, the number of vertices used for that particular

patch decreases. Figure 3.4 shows a coarser version of the patch. Black dots indicate

vertices that are actually used for rendering, white ones are skipped.

The algorithm faces two problems:

1. cracks between patches of different level of detail have to be prevented

2. popping has to be avoided

Both of theses problems can be solved easily. Cracking can be prevented by simply

skipping center edge vertices in the finer representation. Popping might occur when the

detail level of a patch is changes. A possible solution to this issue is to hide the annoying

effect by employing vertex morphing.

17

3.2.5 Interlocked Tiles

The Interlocked Tiles algorithm is an enhancement to the GeoMipMapping algorithm. It

introduces reusable tiles to decrease memory consumption.

Snook (2001) identifies a significant drawback of level of detail algorithms, as “continuous

triangulations disrupt speed advantage of hardware transform- and lighting, which relies

on static geometry for optimum speed.” The algorithm divides the terrain into smaller,

reusable tiles. All tiles are square and of the same size and contain the same number

of vertices distributed on the same regular grid. The tiles are internally represented as

index buffers (DirectX) or element arrays (OpenGL), allowing efficient and fast hardware

processing. The vertices to be rendered are chosen at real-time according to a function

of distance to the view point. The L1-Norm can be used for this purpose. In order to

assure continuous representations, neighbouring tiles have to interlock, i.e. high detail

tiles have to link down to low detail tiles. This can easily be achieved by simply skipping

center edge vertices.

A large landscape could be represented by only using a few tiles, so this technique is

very memory efficient. However, heavy off-line processing is necessary to create patches

of terrain that can be used to represent a large map without leaving the impression of

repetition. The algorithm is not capable of dealing with dynamic height data, as it is not

possible to recalculate the interlocking tiles at run-time.

This method of terrain rendering has been used in the popular game Outcast by Ubisoft.

18

3.2.6 Continuous Level of Detail Rendering

Continuous Level of Detail Rendering (CLOD) algorithms calculate a lower detailed ver-

sion of an object/landscape patch at runtime, using a function of the object‘s distance

to the view point as quality metric. In addition to this, as “the most common drawback

of regular grid representations is that the polygonalization is seldom optimal, or even

near optimal. Large, flat surfaces may require the same polygon density as small, rough

areas do” (Lindstrom, Koller, Ribarsky & Hodges 1996), such algorithms should take

local surface curvature into account. The closer the object is to the view point and the

more curvature it has, the more details will be rendered for that particular object.

A lot of research has been done on reducing level of detail of polygon meshes (Hoppe 1996),

however — since terrain rendering is based on a regular grid (heightmap) — algorithms

for continuous level of detail reduction tend to be less complex than general 3D object

approximation techniques.

19

3.2.7 QuadTree Algorithm

A QuadTree is a special cases of a BSP Tree (see 3.2.2). The idea is to sub divide the

heightmap into square surfaces and save performance through exploiting characteristics of

heightfield terrain representation, in particular the possibility of efficient frustum culling

and level of detail rendering.

Ferraris (2001) describes how a QuadTree structure can be used to perform frustum

culling. The algorithm presented is basically a Brute Force algorithm with fast frustum

culling. No level of detail techniques are employed. However, the QuadTree data structure

is suitable for much more sophisticated and powerful rendering mechanisms.

In this section the author discusses and compares two very influential papers which ap-

proach CLOD QuadTree algorithms in a different manner. The first is “Real-Time,

Continuous Level of Detail Rendering of Height Fields” by Peter Lindstrom et al, pro-

ceedings of Siggraph ‘96. The term “QuadTree” algorithm isn’t used in the white paper

itself, as this publication represents one of the first terrain rendering algorithms of this

type, which hadn‘t been given a name at the time of publication.

The authors present an algorithm that offers “large reduction in the number of polygons

to be rendered” whilst maintaining “smooth, continuous changes between different surface

levels of detail” through dynamically generated levels of detail (Lindstrom et al. 1996).

The algorithm offers a simple image quality metric, defined as the edge length of a

rendered quad measured in screen pixels.

The approximation — or as termed in the paper — simplification of height data is a two

step process, consisting of block selection (coarse-grained refinement) and vertex selection

(fine grained refinement).

Illustration 3.5 depicts how these two steps are carried out. The algorithm works in a

bottom-up manner, calculating the edge length for each block. Blocks are merged and

20

Figure 3.5: Two-step approximation, adapted from Lindstrom (1996)

replaced by their parent blocks if the result is less than the specified error metric (pixels

on screen). In the second phase, specified vertices are selected for rendering in a manner

that prevents undesirable cracks in the rendered terrain.

Though ensuring a high level of detail at a low number of vertices, the presented algorithm

has some significant drawbacks. As the authors point out themselves, their solution is

prone to popping, unless mesh morphing is implemented. The more significant demerit

is that the algorithm works in a bottom-up manner, thus, every single vertex has to be

examined in the refinement process.

21

3.2.8 Roettger et al

The second issue gets addressed by Röttger, Heidrich, Slusallek & Seidel (1998). The

underlying data structure is again a QuadTree. Unlike the algorithm discussed previously,

Röttger‘s solution uses a top to bottom approach. Thus, less vertices have to be examined

in the approximation process, consuming less processing time.

In the process of refining the terrain, a corresponding

Figure 3.6: A QuadTree matrix,
taken from Röttger(1998)

QuadTree matrix is produced as shown in Illustration

3.6. The terrain is processed in a top-down man-

ner, where a ‘1’ represents the center of a quad that

has to be split into sub quads, and a ‘0’ represents a

QuadTree that is sufficiently refined. Elements with a

value of ‘?’ don‘t have to be visited during the refine-

ment and rendering processes. Thus — as Röttger

et al. (1998) points out — the heightmap size is of

no influence to the amount of vertices that are necessary to render a scene, the memory

bandwidth needed is directly defined by the desired image quality.

Illustration 3.7 depicts how the resulting QuadTree matrix is subsequently used to split

the heightmap into triangle fans for rendering. The heightfield data is recursively evalu-

ated, starting at the top-level quad and refining the four resulting sub nodes until certain

quality conditions (that are discussed later) are met.

Cracks between adjacent tree nodes of different levels of detail can be avoided by simply

skipping one center edge vertex in the higher detailed node, as long as the level of detail

doesn‘t differ by more than one. This condition is automatically maintained by the

surface roughness propagation during the preprocessing of the QuadTree, discussed later

in this section.

22

Nodes are recursively split into sub-nodes while the condition l
d

< C is met, where l

is the node‘s distance to the view port, d is the edge length of the node and C is the

minimum desired resolution. This causes far away quads to be drawn at a coarser level of

detail. Note that d directly corresponds to the current level of detail, 1 being the finest

resolution.

The paper then introduces surface roughness propa-

Figure 3.7: QuadTree tesselation,
taken from Röttger(1998)

gation to ensure that rough areas of terrain are ren-

dered at higher level of detail than flat areas. A screen

error d2 is calculated for each vertex, representing the

difference between the approximated height of a pixel

and the real height of that point. The value d2 is de-

fined by the equation d2 = l
d
max | dhi

i=1..6 |, dh1 .. dh6

being the error at the center of each quad edge and its

two diagonals as shown in Illustration 3.8. The cal-

culated values d2 for the finest refinement level are

then propagated to the parent nodes.

Based on this error calculation the paper presents an

Figure 3.8: d2 error calculation,
taken from Röttger(1998)

improved version of the original split criteria:

l

d ∗ C ∗max(c ∗ d2, 1)
< 1

The constant c specifies the desired local resolution

and directly influences the amount of triangles drawn.

One final point has to be taken care of. To prevent

cracks between quads, the level of detail of adjacent QuadTree nodes must not differ by

more than one. This condition can easily by maintained during the pre calculation phase

23

by ensuring that two neighbouring quads satisfy the condition 1
2

< l1
2∗l2 < C

2(C−1)
.

The QuadTree algorithm produces a list of quads that are subsequently sent to the

rendering hardware. The most efficient way to do this is to make use of triangle fans. A

triangle fan is a number of vertices arranged in a circle around a common center vertex.

Thus, only n + 1 vertices have to be sent per triangle. This results in nine vertices per

quad at maximum instead of twenty-four. If an adjacent quad is of lower detail, the

center edge vertex on that edge is simply skipped to avoid cracks.

24

3.2.9 Real-Time Optimally Adapting Meshes (ROAM)

The ROAM algorithm by Duchaineau, Wolinsk, Sigeti, Millery, Aldrich & Mineev-Weinstein

(1997) makes extensive use of triangulation.

As the algorithms discussed in

Figure 3.9: ROAM triangulated terrain, taken from
Duchaineau et al (1997)

the previous section, it creates

a tree. However, the under-

lying data structure is not a

QuadTree, instead, a completely

new type of representation is

introduced. The root of the

tree are two triangles that com-

prise the whole heightmap —

forming what the papers labels a diamond. The leaves contain triangles whose vertices

are formed from adjacent vertices in the height field grid — the finest level of detail.

Each triangle in this structure has a base, a right and a left neighbour. These have

following properties: Either the neighbours are from the same level, or from the next

coarser level (base neighbours), or from the next finer level (left and right).

A split and merge operation defines a transition down or up a level, where splitting adds

a vertex and merging removes one. If the base neighbour of a split triangle is from a

coarser level, the split has to be done recursively to avoid cracks and gaps in the rendered

scene. The papers call this a forced split. A crack occurs when T-junctions are created.

Illustration 3.10 depicts how forced splits prevent cracks in terrain.

To ensure temporal continuity, Watt & Policarpio (2001) suggest to animate splits and

merges by means of vertex morphing.

25

Rendering a scene using ROAM takes place in two phases, a pre-processing phase and

an on-line processing phase. During the pre-processing phase, a set of view-dependent

error bounds is constructed. This phase corresponds to the d2 error calculation of the

QuadTree algorithm and works in a similar manner (see section 3.2.8).

The on-line phase significantly differs from previously

Figure 3.10: A forced split, taken
from Duchaineau et al (1997)

discussed algorithms. Instead of completely triangu-

lating the scene each frame, a split- and a merge-

queue are maintained. These queues update the pre-

vious frame‘s bintree by split and merge operations,

stopping when a geometric screen space error crite-

rion is satisfied (view-dependent). In this way, the

processing overhead can be greatly reduced for frames that don’t differ much from the

previous frame.

It is possible to assign priorities to split and merge operations (high priorities are prefer-

ably assigned to operations that prevent screen space errors). This capacity makes ROAM

highly scalable, as operations with low priority can be neglected when needed.

26

Dynamic Data Offline Calc. Overhead Mem Usage Complexity
Voxel Graphics yes no medium low medium
Brute Force yes no low low low
GeoMipMapping yes no medium low medium
Interlocked Tiles no yes medium high medium
QuadTree yes no medium medium high
ROAM yes no high medium high

Figure 3.11: Algorithm Comparison

3.3 Conclusion

The algorithms discussed differ fundamentally from each other. Their applicability for

a particular purpose is strongly dictated by the nature of the application. On machines

with powerful rendering hardware and less powerful processors, the “CPU-friendly” Brute

Force algorithm might be the best choice, as it features no processing overhead at all3.

On the personal computer market, the situation used to be vice versa. Processors are

powerful and the rendering hardware presents a bottleneck. In such an environment, the

various level of detail rendering algorithm offer a higher frame rate through ellipsis of

unnecessary, hardly visible detail. Yet, rapid advance in the graphics hardware market

indicates that the situation might change in the near future. This might be the reason

why nVidia encourages game developers to use the Brute Force algorithm.

A summarized comparison of the discussed algorithms can be found in figure 3.11.

The Interlocked Tiles algorithm requires a costly precalculation phase, in which the ter-

rain data is examined for reusable tiles. Thus, it is not capable of handling heightmap

data of dynamic nature (e.g. bomb detonations resulting in craters in military simula-

tions, etc...). The GeoMipMap, QuadTree and ROAM algorithms are more suitable for

such dynamic terrain data, although the latter two algorithms have to recalculate their

error-bounds (see section 3.2.8) from scratch. Due to the nature of the used data struc-

3except the function call overhead, see section 3.2.1 for a discussion

27

tures, this can be achieved very efficiently as just portions of the landscape that actually

have changed need to be considered.

The algorithm that copes best with dynamic data is the Brute Force method, as no

pre-processing whatsoever is necessary. The last statement is only correct if no lighting

model is employed. Otherwise, vertex normals have to be recalculated, of course. A very

fast and efficient method to do this has been proposed by Shankel (2002).

For purposes which require terrain to be dynamic — as many simulations and games do —

the QuadTree and ROAM algorithms are superior to their competitors. However, due to

their complexity the required programming effort is tremendous in comparison to a Brute

Force implementation. Military Institutions as well as big entertainment corporations

can easily afford the necessary programming staff. Yet, if budget is a limiting factor,

“easier” algorithms should be considered. The GeoMipMapping algorithm presents a

good compromise between complexity and performance.

28

Chapter 4

Design

The application has been designed using the Unified Modelling Language 1.5 (2003).

Please note that the purpose of this application is to demonstrate engine implementation

aspects in general without any specific reference to particular military or entertainment

applications. Consequently, general terms (‘User’) are used instead of application specific

terms (i.e. ‘Pilot’, etc...).

As stated before, a complete solution for an application engine comprises a large set of

functionality (objects, sound, etc...) and also include tools for creating landscape data

(map editors). The engine implemented as part of this project is a subset of such a

complete application engine and is only concerned with the process of terrain rendering.

4.1 Use Case Diagram

The functionality as apparent to the user is illustrated in figure 4.1.

The system engine interacts with one sole actor — the user. That user could be a person

playing a computer game as well as a jet pilot being trained for combat. It is possible for

29

Figure 4.1: Use Case Diagram

30

the user to specify a set of preferences.

The user can select a desired resolution in which the rendering engine will run, and also

whether the application will be rendering to a window or fullscreen. Additionally, a

number of algorithm specific settings can be set.

The controls can be freely configured by the user. An individual keyboard mapping can

be specified. This does not include the escape key, since it is used for terminating the

application.

The bitmap that gets used as heightmap for rendering can be freely selected by the user,

as well as an optional texture map.

When the application is started, the user is able to control the viewpoint. Since the appli-

cation‘s use is not defined, the general term Camera is used for the user’s viewpoint and

no physical movement model is implemented. For entertainment/simulation purposes,

etc... a physics engine would have to be implemented that handles user movement and

positions the Camera according to its calculations.

It is possible to perform a benchmark. In this mode, the camera follows a predefined

path and the time required is measured by the application.

4.2 Class Diagram

This section describes the classes that are part of the engine system.

The Design Pattern Strategy has been used to encapsulate the rendering algorithms.

Thus, the actual rendering algorithm is easily interchangeable. This mechanism comes

in useful for benchmarking different algorithms. However, due to the time restriction of

the final year project, only the QuadTree algorithm is implemented.

31

Figure 4.2: Class Case Diagram

A graphical representation of the class design is shown in 4.2.

4.2.1 Application

This class handles operating system related issues. It contains the WinMain() function,

which is the startup point of a windows application and creates all other class instances.

It comprises the whole operating system interaction, maintains the application message

loop and also deals with user input. Contrary to the other classes, the Application class

is highly platform dependent and has to be rewritten completely when porting to other

platforms.

32

4.2.2 Renderer

This abstract class acts as interface to the actual rendering class. It defines a set of

methods that each implemented rendering class has to support and also defines a way of

behavior the rendering classes have to follow (concerning Initialization, Rendering, etc...).

This makes it easy to change the actual rendering algorithm, a feature of great value to

benchmark applications.

4.2.3 QuadTreeRenderer

This class encapsulates the actual implementation of the QuadTree algorithm by Röttger

et al. (1998). The class is derived from Renderer.

4.2.4 Map

The class Map represents the heightmap data in memory. It loads the heightmap from a

regular, gray scale bitmap file into memory. The heightmap has to be of size 2n+1∗2n+1.

4.2.5 Camera

The Camera class contains information about the users‘s view point, camera orientation

and field of view. Its position and orientation are used as input for the Rendering class.

The Camera class doesn’t contain any methods concerning movement respecting physical

laws. These would have to be implemented by a separate physics engine that sets the

Camera‘s position and orientation based on its calculations.

33

4.2.6 Console

The Console class provides the user with on-screen information and feedback. The current

frame rate is displayed in the upper left corner of the screen. The console outputs

information messages to the screen and to a text file log.txt for reference.

4.3 Changes to the initial Design

Diagrams depicting the engine design as it was initially planned can be found in the

appendix (figure A.1 and A.2). At the time the first design was carried out the rendering

algorithm had not been decided on. The design was slightly modified in the implemen-

tation phase to meet algorithm-dependent requirements:

• a map segmentation mechanism was planned, which allows subdivision of large

heightmaps into a number of patches. Such a mechanism enables algorithms whose

performance depends on the heightmap size to render huge landscapes at fast frame

rates. However, since the performance of the implemented algorithm is independent

of the data set size (as discussed in section 3.2.8, the implementation was not

necessary).

• a camera track recording and playback mechanism for benchmark purposes was

planned as ‘nice to have’ feature. This could not be accomplished due to lack of

time. However, a benchmark mechanism has been implemented, though the camera

track is predefined in the engine code.

34

Chapter 5

Implementation

The prototype is written in C++ for the Microsoft Win32 platform. The non-proprietary

API OpenGL is used as hardware abstraction layer. The motivation for not using Di-

rect3D lies in the superior portability of OpenGL to other hard- and software platforms.

The source code has been written with portability in mind, reducing Win32 API spe-

cific function calls to the bare minimum (DirectInput is used for input, since there is no

platform independent method of input). Porting the engine to other platforms (Linux,

etc...) is therefore easy, but unfortunately goes beyond the scope of this final year project.

However, cross-platform benchmarks of the discussed algorithms are an interesting topic

and might be picked upon in Future Work (section 6).

Illustration 5.1 shows a screenshot taken of the engine. More screenshots are included in

Appendix C.

35

Figure 5.1: A screenshot of the engine

5.1 Details

Information about OpenGL programming was primarily obtained from Shreiner, Woo,

Neider & Davis (2001).

The engine uses the QuadTree algorithm to render height field data and is further capable

of performing frustum culling.

The pseudo code in figures 5.2 and 5.3 illustrates how the QuadTree algorithm has been

implemented. First, the d2 values are calculated in a top-down manner, traversing down

the QuadTree. The resulting d2 values are than examined for the crack prevention criteria

discussed in section 3.2.8. Therefore, the level of detail of neighbouring quads cannot

differ by more than 1. The resulting d2 values represent the error bounds for the current

level of detail.

36

if bottom node reached then
d2 value← max(interpolation error at the 6 edge centers)

else
sub d2 values← call recursion for sub nodes
d2 value← max(sub d2 values)

end if
return d2 value

Figure 5.2: Recursive d2 error calculation

K ← globaldetail / (2 * (globaldetail - 1));
if not at bottom then

d2 values← recursively prevent cracks for sub nodes
d2 value← max(current d2, neighbouring d2 values * K)

end if
return d2 value

Figure 5.3: Recursive crack prevention algorithm

The calculated d2 values are the basis for vertex selection in the main rendering loop.

The following pseudo code shows how the actually rendered tree nodes are determined.

if inside view frustum then
if bottom node reached then

mark node for rendering
else

d← edge length
l← distance node to view point
error ← l / (d * C * max(1, c * d2))
if error < 1 then

recursively calculate sub node vertices
else

mark node for rendering
end if

end if
end if

Tree nodes that are marked for rendering after this procedure are then converted to

triangle fans. The corresponding vertices are then sent to the rendering hardware, leaving

out center edge vertices that would cause cracks with neighbouring quads of lower detail.

37

5.2 Optimisation

The engine has been coded with optimisation for performance in mind. However, due to

the time limitations of the final year project, only a subset of the possible code optimi-

sations could be carried out. See Future Work in section 6 for additional optimisation

tasks which could not be carried out.

1. Division/Multiplications operations are avoided. Fast Bit shift operations are used

instead of multiplications whenever possible.

2. Cast operations from float to integer are carried out using a faster code than the

implementation created by the Microsoft Visual C++ compiler. See Herf (2000)

for details.

3. Recursive function calls are avoided as far as possible. However, recursive function

calls are necessary for traversing the QuadTree structure.

4. The engine is capable of using OpenGL extensions. It is possible to use (compiled)

vertex buffers and the multi draw extension. Vertex buffers significantly speed up

vertex submission, as discussed in section 3.2.1. See Wright & Sweet (2000) for a

discussion or OpenGL Extension Registry (2004) for details.

5. The rendering algorithm produces triangle fans instead of specifying three vertices

for every single triangle. Similar to triangle strips, triangle fans exploit the fact that

neighbouring polygons share a certain number of vertices. In a triangle fan, adjacent

triangles share a center vertex and the two outer vertices as well. In order to achieve

maximum efficiency, triangles have to be arranged in a circle around their common

center vertex. Using this way of representation the number of vertices necessary to

describe n triangles is reduced to n + 1 for n > 1.

38

5.3 Configuration

The engine supports a large number of settings that are freely configurable. At startup

the engine reads a configuration file terrain.ini which contains the parameters in plain

text format. If no configuration file is present, a set of hard coded default values is loaded.

Please consult the user documentation in Appendix B for a description of the various

settings.

A graphical frontend to this configuration has been implemented in order to provide a

more convenient way of modifying the configuration file. It can be found on the enclosed

CD-ROM.

39

Chapter 6

Evaluation and Future Work

The aims set in the project proposal have been achieved. The final report gives a com-

prehensive comparison of the most influental ideas in the field of terrain visualisation and

a prototypical terrain rendering engine has been implemented.

During the work on the prototype the author gained a lot of experience in the range

of computer graphics programming. Therefore, parts of code that caused problems in

early development stages could be avoided if the possibility to do the project again

existed. An example for this is the heightmap preview feature in the frontend application,

which required more time to implement than expected. Documentation in the MSDN

is fragmentary when it comes to scaling bitmaps using GDI functions. The time that

was required to sort out these problems could have been used to implement some of the

features discussed as future work in the following lines. Still, one of the project aims was

to gain “First-Hand Experience in Engine Implementation” which has been achieved.

The author focused mainly on technical aspects of development. A technically solid and

efficient engine is not sufficient for a commercial product. An application also needs to

provide excellent artwork in order to deliver the best viewing experience. As the author‘s

art skills are limited, the provided textures and heightmaps are of limited quality as well.

40

The project specification was set in a technical context, however, a “real” product would

require a graphics design team that provides the necessary artwork in order to achieve

commercial success.

Other rendering algorithms should be implemented as future work, since algorithms dis-

cussed in this report are only the most influential. Numerous other papers that are worth

further investigation have been published. For example, it is possible to use triangular ir-

regular networks as data structure for representation of a heightfield. Evans, Kirkpatrick

& Townsend (1999) suggests to use isosceles triangles for the network (Right Triangular

Irregular Network). This method of data storage offers numerous advantages and is very

similar to the ROAM algorithm (see section 3.2.9). Lack of time prevented the author

from investigating this source further.

Other rendering algorithms could be implemented. This is easily achievable since the De-

sign Pattern Strategy has been employed. Rendering the same heightmap using different

rendering algorithms gives a fair comparison in terms of speed and efficiency.

In order to achieve the best result possible, frequently called portions of code (e.g. the

rendering loop) should be rewritten in assembler code. Furthermore, performance critical

sections should make use of modern processor instruction set enhancements like “MMX”,

“ISSE”, “ISSE2” and “3DNow!”. Watt & Policarpio (2001) describe how to implement

an efficient SIMD1 mathmetical engine. This could be used as starting point.

The heightmap and texture data is loaded from windows bitmap files. The application

could be enhanced to support more efficient file formats like JPEG, GIF and PNG.

1Single Instruction Multiple Data, part of Intel Streaming SIMD Extensions (ISSE)

41

Bibliography

Abner, W. (2000), ‘Novalogic awarded patent for voxel space 2 engine’.
URL: http: // www. cdmag. com/ articles/ 026/ 082/ nova. html [accessed 5-
February-2004]

Arvo, J., ed. (1990), Graphics Gems II, Academic Press.

de Boer, W. H. (2000), Fast terrain rendering using geometrical mipmapping.
URL: http: // www. connectii. net/ emersion

Duchaineau, M., Wolinsk, M., Sigeti, D. E., Millery, M. C., Aldrich, C. & Mineev-
Weinstein, M. B. (1997), Roaming terrain: Real-time optimally adapting meshes.
URL: http: // www. llnl. gov/ graphics/ ROAM/ [accessed 28-October-2003]

Evans, W., Kirkpatrick, D. & Townsend, G. (1999), Right triangular irregular networks.

Ferraris, J. (2001), ‘Quadtrees’.
URL: http: // www. gamedev. net/ reference/ programming/ features/

quadtrees/ [accessed 20-March-2004]

Glassner, A., ed. (1990), Graphics Gems, Morgan Kauffman.

Herf, M. (2000), ‘Know your fpu’.
URL: http: // www. stereopsis. com/ FPU. html [accessed 19-January-2004]

Hoppe, H. (1996), View-dependent refinement of progressive meshes.

Intel (2003), IA-32 Intel Architecture Software Developer’s Manual, Intel.
URL: http: // www. intel. com/ [accessed 13-February-2004]

King, Y. (2001), Never let ’em see you pop, in M. DeLoura, ed., ‘Game Programming
Gems’, Game Programming Series, Charles River Media, chapter 4.9.

Lindstrom, P., Koller, D., Ribarsky, W. & Hodges, L. F. (1996), Real-time, continu-
ouslevel of detail rendering of heightfields.

Maréchal, S. (2001), ‘The second life of brute force terrain mapping’.
URL: http: // www. gamedev. net/ reference/ programming/ features/

bruteforce/ [accessed 20-March-2004]

42

http://www.cdmag.com/articles/026/082/nova.html
http://www.connectii.net/emersion
http://www.llnl.gov/graphics/ROAM/
http://www.gamedev.net/reference/programming/features/quadtrees/
http://www.gamedev.net/reference/programming/features/quadtrees/
http://www.stereopsis.com/FPU.html
http://www.intel.com/
http://www.gamedev.net/reference/programming/features/bruteforce/
http://www.gamedev.net/reference/programming/features/bruteforce/

Marselas, H. (2001), Optimizing vertex submission for opengl, in M. DeLoura, ed., ‘Game
Programming Gems’, Game Programming Series, Charles River Media, chapter 4.0.

Marshall, C. S. (2002), Triangle strip creation, optimizations and rendering, in T. Dante,
ed., ‘Game Programming Gems III’, Game Programming Series, Charles River Me-
dia, chapter 4.5.

Microsoft (2001), Microsoft Developer Network, Microsoft.

nVidia (2003), ‘Visualising the red planet with nvidia quadro graphics’.
URL: http: // www. nvidia. com/ object/ mars rover. html [accessed 02-April-
2004]

OpenGL Extension Registry (2004).
URL: http: // oss. sgi. com/ projects/ ogl-sample/ registry/ [accessed 20-
March-2004]

Picco, D. (2003), ‘Frustum culling’.
URL: http: // www. flipcode. com/ articles/ article frustumculling-pf.

shtml [accessed 18-February-2004]

Pollack, T. (2003), Focus On 3D Terrain Programming, Game Development Series, Pre-
mier Press.

Röttger, S., Heidrich, W., Slusallek, P. & Seidel, H.-P. (1998), Real-time generation of
continuous levels of detail for height fields, in ‘WSCG ’ 98’.

Shankel, J. (2002), Fast heightfield normal calculation, in D. Treglia, ed., ‘Game Pro-
gramming Gems III’, Game Programming Series, Charles River Media, chapter 4.2.

Shreiner, D., Woo, M., Neider, J. & Davis, T. (2001), ‘Opengl programming guide’.
URL: http: // www. opengl. org/ [accessed 20-April-2004]

Snook, G. (2001), Simplified terrain using interlocking tiles, in M. DeLoura, ed., ‘Game
Programming Gems II’, Game Programming Series, Charles River Media, chapter
4.2.

Turner, B. (2000), ‘Real-time dynamic level of detail terrain rendering with roam’.
URL: http: // www. gamasutra. com/ features/ 20000403/ turner pfv. htm

[accessed 20-March-2004]

Unified Modelling Language 1.5 (2003).
URL: http: // www. omg. org/ technology/ documents/ formal/ uml. htm [ac-
cessed 17-April-2004]

Watt, A. & Policarpio, F. (2001), Real-time Rendering and Software Technology, Vol. 1
of 3D GAMES, Addison-Wesley.

Watt, A. & Policarpo, F. (2003), Animation and Advanced Real-time Rendering, Vol. 2
of 3D GAMES, Pearson.

43

http://www.nvidia.com/object/mars_rover.html
http://oss.sgi.com/projects/ogl-sample/registry/
http://www.flipcode.com/articles/article_frustumculling-pf.shtml
http://www.flipcode.com/articles/article_frustumculling-pf.shtml
http://www.opengl.org/
http://www.gamasutra.com/features/20000403/turner_pfv.htm
http://www.omg.org/technology/documents/formal/uml.htm

Wright, R. S. & Sweet, M. (2000), OpenGL SuperBible, Waite Group Press.

Algorithm white papers that have neither an URL nor are published in conference pro-
ceedings can be found as PDF in the folder Papers/ on the accompanying CD-ROM.

44

Appendix A

Initial Design Diagrams

Figure A.1 and A.2 show the initial engine design as it was proposed in the design phase.
The final design is discussed in section 4.

45

Figure A.1: Initial Use Case Diagram

46

Figure A.2: Initial Class Diagram

47

Appendix B

User Documentation

This user documentation is also available as a help file in the executable package on the
CD-ROM enclosed to this report. To access the documentation, start “Frontend.exe”
and press F1.

B.1 Engine Configuration

All settings are stored in the file terrain.ini, located in the same directory as Ter-
rainEngine.exe resides.

Frontend.exe is a graphical frontend to this configuration file. It has been written in order
to provide a more convenient method of altering the engine configuration. However, the
settings can easily be edited by hand if the frontend is not available.

The following sections describe the individual parameters based on the frontend applica-
tion.

48

B.1.1 ‘General Settings’ Tab

This property page contains all the general settings.

A heightmap can be specified either by

Figure B.1: The General Tab

typing in the filename or using the file
chooser dialog. The picture in the middle
shows a preview of the selected file. The
heightmap has to be a gray scale bitmap
file with dimensions 2n + 1 * 2n + 1.

In Benchmark Mode, the user has no con-
trol over the camera. It follows a prede-
fined path and terminates, displaying the
time required. This is useful for compar-
ing different configurations.

Perform Frustum Culling specifies whether
to cull vertices that are not inside the view-
ing frustum. See section 3.2.2 for details.

Demonstrate Frustum Culling translates
the point of view after culling and the
model-view transformation have been ap-
plied. This feature can be used to illus-
trate how frustum culling works. See Il-
lustration C.3 for an example.

Run in Fullscreen specifies that the engine
should try to run in fullscreen mode. How-
ever, if the specified screen resolution can
not be set, it will fall back to windowed
mode.

Global Detail and local Detail specify the parameters for the QuadTree rendering algo-
rithm. See 3.2.8 in the project report for a discussion. These two parameters can be
altered at run-time using the specified keys. (Default keys are ‘I’, ‘K’, ‘O’ and ‘L’)

49

B.1.2 ‘Texture’ Tab

All settings regarding texture mapping are located on this page.

Enable Texture Mapping specifies whether

Figure B.2: The Texture Tab

to use textures at all. If disabled, the
scene is rendered with gouraud shading by
default.

Texture Edge Length controls how the tex-
ture is scaled against the map. Setting
this parameter to 1 means that the tex-
ture is mapped to exactly one square in
the heightmap. Setting this parameter to
the width of the heightmap means that
the texture is applied to the whole height-
map. This behaviour can also be achieved
by setting Texture Edge Length to zero.

50

B.1.3 ‘OpenGL’ Tab

The settings on this page allow modification of OpenGL specific settings.

The Field Of View settings determine the

Figure B.3: The OpenGL Tab

projection matrix and view frustum. The
projection matrix is specified in degrees in
the y direction and an aspect ratio. Set-
ting the aspect ratio to 1 means that the
field of view in x direction is the same as
in the y direction.

The Near and Far Clipping Plane specify
the clipping planes for the viewing frus-
tum. The distance to the near clipping
plane has to be greater than zero. The
default values are 0.1 and 150.

It is possible to specify which OpenGL Ex-
tensions the rendering function should use.
These settings have significant influence
on the performance of the engine and should
therefore only be modified by experienced
users.

The gl vertex array extensions enables an
application to store vertex data in buffers
instead of issuing a separate function call
for every single vertex. This extension sig-
nificantly speeds up data transfer to the
hardware, as vertex data can be optimized
by the graphics driver. Using the gl compiled vertex array
extension enables even more vertex optimizing by pre compiling the vertex data. This
can speed up rendering on some cards, but might cause problems or slow down rendering
on some devices.

Using the gl multidraw arrays extensions multiple objects can be rendered with one single
function call.

The arb vertex buffer object allows clients to store vertex data in server-side memory.
This can speed up rendering on some cards.

51

B.1.4 ‘Controls’ Tab

On this property page the controls can be specified.

Movement Speed specified how fast the cam-

Figure B.4: The Controls Tab

era moves when a key is pressed. The
speed is measured in map units per sec-
ond.

If Free Move is selected, the camera alti-
tude can be freely controlled by the user.
The corresponding keys are ‘move up’ and
‘move down’. By default, the camera hov-
ers two map units above the ground.

The keys increase global detail and de-
crease global detail recalculate the error
bounds for the QuadTree algorithm with a
new value for C. This step may take some
time on slow machines, during which the
engine freezes. Altering the local level of
detail doesn‘t take any time, as there is no
need to recalculate the error bounds.

The ‘toggle’ keys can be used to set dif-
ferent rendering modes. The shade model
switch toggles between flat shading and
smooth shading, sometimes referred to as
‘Gouraud Shading’. The polygon mode
switch specifies whether the scene is ren-
dered using filled polygons or as a wire

frame model.

52

Figure B.5: On-Screen Information

B.2 Starting the Engine

The engine executable file is named TerrainEngine.exe. On start, the program attempts
to read the configuration from terrain.ini. A default configuration is used if the file
doesn‘t exist. The engine then tries to load the heightmap and the texture map1 from
disk. If an error occurs, an information message is displayed and the engine terminates.

After a successful start the user receives control over the camera. The camera is controlled
using the mouse and keyboard, as specified in the configuration file.

Press the escape key to terminate the application.

B.2.1 On Screen Information

During execution, information about the engine is displayed at the top of the screen.

The first number indicates the number of rendered frames per second. LLoD is the
current local level of detail, GLoD the current global level of detail.

Triangles indicates the number of triangles sent to the rendering hardware for each frame.
Similarly, T-Fans is the number of triangle fans.

1if texture mapping is enabled

53

Appendix C

Screenshots

This section contains screenshots taken of the prototype.

54

Figure C.1: A textured heightmap

55

Figure C.2: The same scene as C.1 without texture mapping

56

Figure C.3: Frustum culling demonstration

57

Appendix D

Project Proposal

The next page shows the final year project proposal.

58

School of Computing & Technology
University of Derby

Computing Scheme - Final Year Project Proposal

Name: ZLABINGER Gerhard
Project Title: Fast Real-Time Terrain Visualisation Algorithms

Main Supervisor:
Second Supervisor:

Does this project meet the BCS Accreditation requirements? Please include any constraints.

Aims and Objectives of Project:

- Perform research on existing Algorithms and Approaches for rendering terrain in real-time

- Examine different algorithms for advantages/disadvantages

- Analyse Results for applicability to Simulation/Entertainment/Military Applications

- Implement a prototypical Terrain Rendering Engine

Expected Outcomes or Deliverables:

- Prototype of a Terrain Rendering Engine

- Project Report

Methodology:

- Literature Review of published papers on this topic (especially the ROAM-Algorithm by
Mark Duchaineau/Lawrence Livermore National Laboratory and the work of Peter
Lindstrom/Georgia Institute of Technology)

- Study Algorithms presented on various Internet Platforms (e.g. QuadTree-Representation of
Terrain, Triangulation, ...)

Hardware and Software Requirements (these MUST be available before the project starts):

Signature: Date:

Supervisor’s Signature: Date:
(If you sign here, you are AGREEING to manage this student’s project)

Appendix E

Progress Reports

The following pages contain the progress reports compiled for the meetings with the
supervisor.

60

Progress Report, 24.10.2003

Tasks Completed

Identify the Internationally recognized Experts
• Mark Duchaineau, Lawrence Livermore National Laboratory
• Peter Lindstrom, Georgia Institute of Technology
• H. Hoppe, Microsoft Research
• S. Röttger

Find Sources on Web, Library...

Papers downloaded from the Web (ACM Digital Library)
• Stefan Röttger, Real-Time Generation of Continuous Levels of Detail for Height Fields
• Mark Duchaineau et al, ROAMing Terrain: Real-time Optimally Adapting Meshes
• Peter Lindstrom et al , Visualization of Large Terrains Made Easy, IEEE Visualization 2001
• PANKAJ K. AGARWAL, Efficient Algorithms for Geometric Optimization, ACM Computing Surveys,

Vol. 30, No. 4, December 1998
• Randy K. Scoggins et al, Enabling Level-of-Detail Matching for Exterior Scene Synthesis
• Joshua Levenberg, Fast View-Dependent Level-of-Detail Rendering Using Cached Geometry, IEEE

Visualization 2002
• LEIIA DE FLORIANI et al, Hierarchical Triangulation for Multiresolution Surface Description, ACM

Transactions on Graphics, Vol. 14, No. 4, October 1995
• Brandon Lloyd et al, Horizon Occlusion Culling for Real-time Rendering of Hierarchical Terrains, IEEE

Visualization 2002
• Boris Rabinovich, Visualization of Large Terrains in Resource-Limited Computing Environments, IEEE

Visualization 1997
• Renato Pajarola, QuadTIN: Quadtree based Triangulated Irregular Networks, IEEE Visualization 2002
• many more...

Books found in Learning Centre
• Watt A., Policarpo F. (2001). 3D GAMES, Real-time Rendering and Software Technology
• Watt A., Policarpo F. (2003). 3D GAMES, Animation and Advanced Real-time Rendering
• (1990). Graphics Gems
• (1991). Graphics Gems II
• (1992). Graphics Gems III
• (1994). Graphics Gems IV
• (2000). Game Programming Gems
• (2001). Game Programming Gems 2
• (2002). Game Programming Gems 3

Next Tasks:

Evaluate Sources

Problems Encountered:
none

Brief summary of project relevant content:
Watt A., Policarpo F. (2001). 3D GAMES, Real-time Rendering and Software Technology
Gives a overview about existing approaches to real-time terrain visualization, discusses ROAM and work of
Peter Lindstrom in a very manner. Contains useful information about 3D application programming in
general

Watt A., Policarpo F. (2003). 3D GAMES, Animation and Advanced Real-time Rendering

Contains useful information about 3D Engine programming in general.

(1990). Graphics Gems

(1991). Graphics Gems II

(1992). Graphics Gems III

(1994). Graphics Gems IV

(2000). Game Programming Gems

contains useful information on game/engine design

Yossarian King, 4.9 'Never let 'em see you pop': Discusses means of Level of Detail Rendering, not
precisely in context of terrain rendering, but quite useful. Introduces a so called magnification factor to the
Level of Detail selection, which is a relation between the size of an object on screen and the actual size of
the object

(2001). Game Programming Gems 2
Greg Snook, Simplified Terrain Using Interlocking Tiles: presents an easy to implement alternative to
complex level of detail algorithms, such as ROAM, ... uses relatively small patches (tiles) that are connected
to each other using link elements

(2002). Game Programming Gems 3
Jason Shankel, Maxis, Fast Heightfield Normal Calculation: presents a method for fast computing face and
vertex normals in height maps. This method could be very useful for dynamically changing terrain, since in
that case the normals, which are needed for realistic lighting, would have to be recomputed at rendering
time.

Progress Report, 7.11.2003

Completed Tasks

Found Additional Sources
• Polack, Trent (2003), 3D Terrain Programming, Focus On, Premier Press,

ISBN 1-59200-028-2

Current Tasks

Evaluate Sources
• started to read/evaluate the sources

Write Literature Review
• started to write literature revuew

• create bibliography

• create glossary

Next Tasks:
Evaluate Sources

Write Literature Review

Problems Encountered:
Postal Delay due to strike

Progress Report, 21.11.2003

Current Tasks

Evaluate Sources
• continued to read/evaluate the sources

Write Literature Review
• continued to write literature revuew

• continued bibliography

• continued glossary

Next Tasks:
Evaluate Sources

Write Literature Review

Write Interim Report

Create UML Design

Next Milestones:
Interim Report due 5th December

Problems Encountered:
none

Progress Report, 12.12.2003

Current Tasks

Evaluate Sources
• continued to read/evaluate the sources

Write Literature Review
• continued to write literature revuew

• continued bibliography

• continued glossary

Create UML Design
• Created Use Case Diagram

• Created Initial UML Class Design

Next Tasks:
Finish evaluating Sources

Finish Literature Review

Problems Encountered:
delay due to assignments in other modules

According to the project plan, I'm about two weeks behind. However, this should not result in a
real problem since I've calculated enough buffer time at the end of the project and, moreover, the
christmas holidays are a great opportunity to catch up with the original project plan in case of
further delays in the future.

Progress Report, 13.02.2004

Progress
I've decided to implement the engine in OpenGL rather than DirectX, as using a non os-dependent
hardware abstraction layers allows interesting performance comparison on different platforms
(linux, etc...).

In the process of implementing the terrain rendering engine, I often discover new aspects of
algorithms that are worth discussing in the literature review. That's mainly the reason the literature
review is not finished, yet.

Current Tasks

 Write Literature Review
• finalize literature review

 Implement Prototyped Terrain Rendering Engine
• Created Application Framework

• Started implementing QuadTree algorithm

Next Tasks:
Finish Literature Review

Design

Implement Engine

Test Engine

Layout

Problems Encountered:
Problem: 64-Bit int bugs in GNU C++ compiler prevent measuring high resolution timer
Solution: switched to Microsoft Visual C++ .NET compiler.

Problem: Documentation of ATI vendor specific OpenGL extensions seems to be incomplete
Possible Solution: Use ARB extensions instead

Progress Report, 27.02.2004

Progress
The last two weeks I've been mainly concerned with implementation of the QuadTree algorithm as
well as implementing culling.

The prototyped engine now performs surface roughness propagation, the implementation of the
roettgers quadtree algorithm is now complete.

Next tasks will be to apply texture mapping, allow larger maps by patching and performance tuning
by removing math.h calls (sqrt, cos, sin, ...) using lookup tables.

Current Tasks

 Write Literature Review
• finalize literature review

 Implement Prototyped Terrain Rendering Engine
• Started implementing QuadTree algorithm

• optimize performance

• apply textures

Next Tasks:
Finish Literature Review

Design

Implement Engine

Test Engine

Layout

Problems Encountered:
none

Progress Report, 19.03.2004

Progress
The past weeks I've been optimizing the performance of the engine as well as fixing bugs. There
engine now has a 'console', providing on-screen information to the user.

The most significant enhancement is that the map-size isn't static anymore, thus it doesn't have to be
known at compile time. The surface map and all internal buffers are now completely dynamic,
enabling the user to render any square height map with width=2n1 without re-compiling the
engine.

Texture mapping has been applied (though the current texture is always a checked image, as I
couldn't find appropriate freeware to create terrain textures that match a given heightmap).

A graphical user interface is almost finished, it allows the user to modify engine settings in a more
convenient way than editing the configuration file with a text-editor.

Current Tasks

 Write Literature Review
• finalize literature review

 Implement Prototyped Terrain Rendering Engine
• finish GUI

• find & eliminate bugs

Next Tasks:
Test

Finish Literature Review

Problems Encountered:
Graphical User Interface: MFC CStatic control seems to either have bugs or be wrong
documented. If no solution can be found, workaround is to draw image of heightmap manually
using native Win32Api GDI functions.

	Introduction
	Aims and Objectives

	Background
	Definition of Terrain Rendering
	Historical Development
	Background
	Heightmaps

	Classification of Algorithms
	Voxel Graphics based Algorithms
	Polygon based Algorithms
	Brute Force Rendering
	Culling
	Level of Detail Rendering
	GeoMipMapping
	Interlocked Tiles
	Continuous Level of Detail Rendering
	QuadTree Algorithm
	Roettger et al
	Real-Time Optimally Adapting Meshes (ROAM)

	Conclusion

	Design
	Use Case Diagram
	Class Diagram
	Application
	Renderer
	QuadTreeRenderer
	Map
	Camera
	Console

	Changes to the initial Design

	Implementation
	Details
	Optimisation
	Configuration

	Evaluation and Future Work
	Initial Design Diagrams
	User Documentation
	Engine Configuration
	`General Settings' Tab
	`Texture' Tab
	`OpenGL' Tab
	`Controls' Tab

	Starting the Engine
	On Screen Information

	Screenshots
	Project Proposal
	Progress Reports

